1-PHOSPHACEPHALOSPORIN. I. SYNTHESIS OF RACEMIC 7-UNSUBSTITUTED-1-PHOSPHADETHIA-3-CEPHEM 1-OXIDES

> Hisao Satoh and Teruji Tsuji Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

<u>Abstract</u>: The novel unnatural ring system, 1-phosphacephalosporin, was synthesized for the first time from 4-acetoxy-2-azetidinone.

The chemical reactivity of the β -lactam ring seems to play an important role in determining the biological activity of β -lactam antibiotics while the sulfur atom in the cephem ring is not essential.¹ We thought that replacement of the sulfur atom in the cephem nucleus with the electron-withdrawing, P(0)(OEt) group,² would enhance the reactivity of the β -lactam carbonyl and consequently modify the antibacterial activity. This paper reports the preparation of a novel ring system, 1-phosphacephalosporins 9. Although some cephem derivatives substituted by the phosphonic acid group, -P(0)(OH)₂, as a substituent at the C-3,^{3a} C-4^{3b} and C-7^{3c} positions of the nucleus have been synthesized, no 1-phosphadethiacephem derivatives have been reported yet.

Our synthetic approach was to use an Arbusov reaction⁴ and an intramolecular Wittig reaction⁵ as the key steps. 4-Acetoxy-2-azetidinone 1^{4a} reacted with diethyl allylphosphonite 2^{6} (100°, 2 h) to give the phosphinate 3 in 77.0% yield.⁷ Reflux of 3 with p-nitrobenzyl glyoxylate 4a in benzene gave a diastereomeric mixture of the hemiaminal 5a in 83.8% yield. Treatment of 5a with SOCl₂ in the presence of 2,6-lutidine in THF yielded the α -chloro-acetate, which was subsequently treated (20°, 18 h and reflux 5 h) with Ph₃P and 2,6-lutidine in THF to provide the phosphorane 6a in 80.8% from 5a. Ozonolysis of 6a (1 eq. CF₃COOH, ⁵ CH₂Cl₂, -70°) followed by reduction of the ozonide (Me₂S) and aq. NaHCO₃ work-up gave the desired p-nitrobenzyl 1-phosphadethia-1-ethoxy-3-cephem-4-carboxylate 1-oxides, (±)-(1R)- [mp 162-165°C] and (±)-(1S)-8a [mp 174-180°C], ⁷ as a mixture of the epimeric isomers at phosphorus, which could be separated by chromatography on SiO₂ in a ratio of 2:1, in 23.3% yield from 6a. (±)-(1R)-8a: C₁₆H₁₇N₂O₇P; v^{CHCl}_{max} 31785 cm⁻¹; $\lambda_{\text{max}}^{\text{EtOH}}$ 265 nm. (±)-(1S)-8a: C₁₆H₁₇N₂O₇P; v^{CHCl}_{max} 31780 cm⁻¹; $\lambda_{\text{max}}^{\text{EtOH}}$ 265 nm. The ¹H NMR spectra (Fig. 1) of the (1R)- and (1S)-isomers showed all the resonances at the expected positions. In the former, the C-2 protons signal (δ 2.81) appears as a doublet-doublet. This splitting is due to coupling (³J_{HH} = 5.0 Hz) between the C-2 protons and the C-3 proton and to coupling (²J_{HP} = 18.0 Hz⁸) between the C-2 protons and phosphorus. The C-3 proton and phosphorus. A similar signal pattern was also observed

Fig. 1. ¹H NMR spectra of (\pm) -(IR)- and (\pm) -(IS)-8a in CDCl₃(90MHz)

in the spectrum of the (1S)-isomer (Fig. 1). The upfield shift (Δ ca. 0.1 ppm) of C-3 proton in (1S)-isomer compared to that in (1R)-isomer and the partly complicated signal pattern of C-2 protons in the (1S)-isomer relative to that in the (1R)-isomer can be efficiently used to distinguish between the (1R)- and (1S)-isomers, including other 1-phosphacephem derivatives reported later (see Fig. 1).

To determine the stereochemistry of this novel ring system, an X-ray crystallographic study⁹ on (\pm) -(1S)-8a was undertaken. The results are summarized in Table I and the molecular

Compound	Sum of bond angles about nitrogen, deg	Distance of N atom from plane of three C atoms, Å	β-Lactam bond length (N-CO), Å
(±)-(IS)-8a	355.7	0.165	1.387
1-Oxacephem ¹¹	352.3	0.220	1.393
Cephaloridine ¹²	350.7	0.24	1.382
Cephalosporin C ¹²	345.0	0.32	1.385

Table I. Structural Characteristics of 1-Phosphadethiacephalosporin (±)-(IS)-8a and Representative β-Lactam Antibiotics

Fig. 2. A perspective view of (±)-(IS)-8a based on X-ray data ; hydrogen atoms have been omitted for clarity except for that at C-6.

geometry is illustrated in Figure 2. In the crystal state, the six-membered ring exists in a half-chair like conformation similar to that in 3-cephem 1-oxide¹⁰ and the relative configuration between the H atom at C-6 and the O atom of the P=O group is cis. The β -lactam nitrogen is not planar, but is 0.165 Å above the plane defined by the three attached atoms.¹²

The conversion from 3 into the analogous p-methoxybenzyl (PMB) esters, (±)-(1R)- and (±)-(1S)-&b, which could be separated by chromatography in a ratio of 2:1, proceeded uneventfully. (±)-(1R)-&b: $v_{C=0}^{CHC1}$ 1778 cm⁻¹; NMR (CDC1₃, δ , Hz) 2.62 (d-d, ${}^3J_{HH}$ = 5.0, ${}^2J_{HP}$ = 18, 2H, C-2), 3.76 (s, 3H, OCH₃), 6.26 (t-d, ${}^3J_{HH}$ = 5.0, ${}^3J_{HP}$ = 27.0, 1H, C-3). (±)-(1S)-&b: NMR 2.69 (partly complex d-d, ${}^3J_{HH}$ = 5.0, ${}^2J_{HP}$ = 17.5, 2H, C-2), 3.79 (s, 3H, OCH₃), 6.17 (t-d, ${}^3J_{HH}$ = 5.0, ${}^3J_{HP}$ = 27.0, 1H, C-3). (±)-(1S)-&b: NMR 2.69 (partly complex d-d, ${}^3J_{HH}$ = 5.0, ${}^2J_{HP}$ = 17.5, 2H, C-2), 3.79 (s, 3H, OCH₃), 6.17 (t-d, ${}^3J_{HH}$ = 5.0, ${}^3J_{HP}$ = 27.0, 1H, C-3). AlCl₃-anisole¹³ (CH₂Cl₂, room temp.) rapidly deprotected the above PMB esters followed by treatment with aq. NaHCO₃ to afford the expected sodium carboxy-lates (±)-(1R)- and (±)-(1S)-9, respectively. (±)-(1R)-9: mp ca. 95°C, $v_{C=0}^{KBr}$ 1751 cm⁻¹, $\lambda_{max}^{H_2O}$ 250 nm (ϵ 7761). (±)-(1S)-9: mp ca. 110°C, $v_{C=0}^{KBr}$ 1752 cm⁻¹, $\lambda_{max}^{H_2O}$ 250 nm (ϵ 7682). The antibacterial activities of both sodium salts were disappointing.

Acknowledgement. We are grateful to Dr. M. Shiro for the X-ray analytical data and to Dr. T. Yoshida for the biological testing.

References and Notes

- K. G. Holden, "Chemistry and Biology of β-Lactam Antibiotics," R. B. Morin and M. Gorman, Eds., Academic Press, New York, 1982, Vol. 2, p 99.
- The σ_p value of 0.52 for a similar electron-withdrawing group, P(0)(0Et)₂, has been reported. See: E. N. Tsvetkov, D. I. Lovanov, L. A. Isosenkova, M. I. Kabachnik, J. <u>Gen</u>. Chem. USSR (Engl. Transl.) <u>39</u>, 2126 (1969).
- (a) T. Takaya and T. Chiba, Jpn. Kokai <u>Tokkyo</u> <u>Koho</u> JP 55-115,892. (b) B. G. Christensen and R. W. Ratcliffe, <u>Ann. Reports in Med. Chem</u>. <u>11</u>, 271 (1976). (c) Pfizer Inc. Brit. 1,355,872 (1974). J. E. Dolfini and H. Breuer, Ger. Offen. 2,208,273 (1972).
- (a) K. Clauss, D. Grimm and G. Prossel, <u>Liebig's Ann. Chem</u>. 539 (1974). (b) M. M. Campbell, N. I. Carruthers and S. J. Mickel, Tetrahedron <u>38</u>, 2513 (1982).
- I. Ernest, J. Gosteli, C. W. Greengrass, W. Holick, D. E. Jackman, H. R. Pfaendler and R.
 B. Woodward, J. Am. Chem. Soc. <u>100</u>, 8214 (1978) and references cited therein.
- A. I. Razumov, B. G. Liorber, M. B. Gazizov and Z. M. Khammatova, <u>Zh. Obshch. Khim. 34</u>, 1851 (1964).
- 7. All yields were not optimized. All synthetic compounds were racemic mixtures, but only one diastereomer is depicted for convenience.
- J_{H-C-C-P} > J_{H-C-P} is well known. G. Mavel, "Progress in Nuclear Magnetic Resonance Spectroscopy," Vol. 1, J. W. Emsley, J. Feeney, L. H. Sutcliffe, Eds., Pergamon Press, London (1966) Chapter 4.
- 9. <u>Crystal data</u>: $(\pm)-(1S)-\underline{8a}$, monoclinic, $\underline{P2/C}$, $\underline{a} = 17.853(2)$, $\underline{b} = 12.211(1)$, $\underline{c} = 8.136(1)$ \underline{A} , $\underline{\beta} = 101.94(1)^{\circ}$, $\underline{z} = 4$, $\underline{D}_{x} = 1.46$ gcm⁻³. The intensities of 2950 reflections $(2\theta_{max} = 130^{\circ})$ were measured on a Rigaku diffractometer using CuK_a radiation ($\lambda = 1.54178$ Å). The structure was solved by direct methods and refined by block-diagonal least squares technique to $\underline{R} = 0.048$ for 2399 reflections. Atomic coordinates, excluding the hydrogen atoms of the ethoxyl group, have been deposited with the Cambridge Crystallographic Data Centre.
- R. D. G. Cooper, P. V. Demarco, C. F. Murphy and L. A. Spangle, <u>J. Chem. Soc</u>. (C), 340 (1970).
- Diphenylmethyl 7α-methoxy-3-(1-methyl-1H-tetrazol-5-ylthio)methyl-7β-phenylacetamido-1oxa-1-dethia-3-cephem-4-carboxylate: M. Shiro, H. Nakai, H. Onoue, and M. Narisada, <u>Acta</u> <u>Cryst</u>. <u>B36</u>, 3137 (1980).
- 12. (a) R. M. Sweet in ref. 1, Chapter 7, p 280. (b) D. B. Boyd, "Chemistry and Biology of β-Lactam Antibiotics" (R. B. Morin and M. Gorman, eds.), Academic Press, New York, 1982, Vol. 1, p 437.
- T. Tsuji, T. Kataoka, M. Yoshioka, Y. Sendo, Y. Nishitani, S. Hirai, T. Maeda and W. Nagata, <u>Tetrahedron Lett</u>. 2793 (1979).

(Received in Japan 7 January 1984)